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Abstract

While many methods have been proposed for detecting disease outbreaks from

pre-diagnostic data, their performance is usually not well understood. We argue that

most existing temporal detection methods for biosurveillance can be characterized

as a forecasting component coupled with a monitoring/detection component.

In this paper, we describe the effect of forecast accuracy on detection performance.

Quantifying this effect allows one to measure the benefits of improved forecasting

and determine when it is worth improving a forecast method’s precision at a cost

of robustness or simplicity. We quantify the effect of forecast accuracy on detection

metrics under different scenarios and investigate the effect when standard assump-

tions are violated. We illustrate our results by examining performance on authentic

biosurveillance data.
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1 Modern biosurveillance

In modern biosurveillance, time series of pre-diagnostic health data are moni-

tored for the purpose of detecting disease outbreaks. Pre-diagnostic time series

typically consist of daily counts of regional emergency department chief com-

plaints such as cough, daily sales of cough remedies at pharmacy or grocery

stores, daily counts of school absences, or in general, data that are expected to

contain an early signature of a disease outbreak. Outbreaks of interest include

terrorist-driven attacks, e.g. a bioterrorist anthrax release, or naturally occur-

ring epidemics, such as an avian influenza outbreak. In either setting, the goal

is to alert public officials and create an opportunity for them to respond in a

timely manner.

To do this effectively, alerts must occur quickly after the outbreak begins,

should detect most outbreaks, and have a low false alert rate. There are a
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host of difficulties in achieving such performance (as described by Fienberg

and Shmueli (2005)), foremost among them the seasonal, nonstationary, and

autocorrelated nature of the health data being monitored. Although current

biosurveillance data are typically monitored at a daily frequency, the methods

and results in this paper are general and apply to data at other time scales as

well.

In order to identify outbreaks in pre-diagnostic health data, most modern al-

gorithms use some type of forecasting and then monitor the residuals (i.e.,

forecast errors) using a control chart. When a sequence of residuals suggests

a disease outbreak, an alert is generated. In several cases this sequence of

forecast, then monitor is not done explicitly. Instead, a control chart is al-

tered and then applied to the raw data. Even in such cases, the algorithm

can be represented as a combination of forecasting and control chart moni-

toring. For example, in EARS or BioSense (programs initiated by the Centers

for Disease Control and Prevention), a control chart is applied to the raw

data, but a ‘sliding window’ of recent data is used to set the control limits

(as suggested in Hutwagner, Thompson, Seeman and Treadwell (2003)). This

combination is equivalent to using a moving-average forecast method to fore-

cast the next point and then applying a simple control chart to the forecast

errors. ESSENCE (a Department of Defense monitoring system) uses regres-

sion to forecast the next day’s value, and then explicitly monitors the residuals

in a control chart (described in Lombardo, Burkom and Pavlin (2004)).

The effect of forecasting precision on detection rate is therefore applicable

to biosurveillance, since it is important to know how much benefit improved

forecasting will provide. Forecast methods have several properties which are

useful in biosurveillance aside from their precision, such as robustness to non-
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normality, outliers, or outbreaks in the training data, as well as generating

uncorrelated residuals (discussed later in Section 4.4.1). When faced with a

new forecast method which is more precise but is worse in these properties, the

improvement must be quantified to understand the tradeoff. Although central

to many applications, the effect of forecast precision on detection performance

has not been directly studied. Monitoring and forecasting have been discussed

as being similar in purpose and approach (by Atienza, Ang and Tang (1997)).

The two also have been used together for the opposite purpos:; rather than

using forecasting to improve control chart detection, control charts have been

used to identify issues in the forecast method, starting with Van Dobben

De Bruyn (1967). In the following sections, we examine the quantitative effect

of forecasting improvement on control chart detection, both in the standard

case of independent normal residuals as well as under various violations of

assumptions which occur in practice.

2 Problem description

Our ultimate purpose is to provide early notice of an outbreak based on finding

an outbreak signature in the data. We will often refer to the outbreak signature

as simply the ‘outbreak’. However, it should be clear that there is a distinction

between the outbreak itself and its manifestation or signature in the monitored

data series. For evaluation purposes, algorithms must be evaluated on their

ability to detect these outbreak signatures. In the following we first describe

the metrics used to evaluate the performance of a biosurveillance algorithm.

We then describe control charts, which are the most popular tool used for

monitoring forecast errors.
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2.1 Performance metrics

Consider a time series of health data, collected periodically. Daily is the most

common collection interval, and we use the convention of assuming daily col-

lection throughout the paper; however, the results apply equally well for dif-

ferent intervals. Now consider that we have many such series of the same type;

some contain outbreaks, and some do not. Consider that we take k series, each

with an outbreak, and m series without an outbreak. The main metrics used

in biosurveillance to evaluate an outbreak detection method are sensitivity,

specificity, and timeliness. However, we use the less ambiguous measures de-

scribed in Fricker, Jr., Hegler and Dunfee (ming), which are closer to those

used in classical SPC:

Detection Rate : the proportion of outbreaks detected, out of the k se-

ries with outbreaks. As k is made arbitrarily large, this measures the per-

outbreak probability that there will be an alert sometime during the out-

break.

ATFS : the Average Time to False Signal, this is the average number of

days until an alert, over the m series without outbreaks. As m is made

arbitrarily large, this measures the expected time until a false alert. For

implementations which reset after any alert, 1/ATFS will be the average

proportion of days with false alerts, given that there is no outbreak.

ATFOS : the Average Time to First Outbreak Signal, this is the expected

number of days until an alert is generated, given that the method does

eventually alert during the outbreak signal.
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We note here that each of these metrics depends on the outbreak signal itself,

as well as on the underlying health data series. In biosurveillance the variety

of data sources leads to a variety of baseline behaviors. Furthermore, the

exact outbreak signature is unknown. Therefore, it is generally important to

consider a variety of baseline time series as well as a variety of outbreak signal

shapes and sizes for evaluating algorithm performance. Given the wide array

of possibilities, simulation methods, and metrics, it is difficult to make overall

claims about the performance of one method versus another. However, if we

can generate general claims about the effect of forecast precision on detection

effectiveness, it will allow us to rank methods based on their actual forecast

effectiveness, independent of the outbreak type or monitoring method. More

importantly, quantifying this effect allows us to determine how much more

effective the better forecast method will be, specific to the type of monitoring

being applied and the type and size of the outbreak to be detected. In addition,

by examining properties of the residuals, we can identify those cases where a

better forecast method will not necessarily produce better detection.

2.2 Overview of control charts

Control charts are statistical tools for monitoring process parameters and

alerting when there is an indication that those parameters have changed. Orig-

inally designed for use in manufacturing, they are now widely used in health-

related fields, particularly in biosurveillance (as seen in Benneyan (1998);

Woodall (2006)). There are some difficulties in directly applying control charts

to daily pre-diagnostic data, since classical control charts assume that obser-

vations are independent, identically distributed, and typically normally dis-
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tributed (or with a known parametric distribution). For this reason, forecast-

ing should be used to precondition the data in order to create residuals which

better meet control chart requirements.

Control charts are usually two-sided, monitoring for an increase or decrease in

the parameter of interest. This is done using an upper control limit (UCL) and

lower control limit (LCL), respectively. In biosurveillance, we are usually only

concerned with a significant increase in the underlying behavior indicative

of a disease outbreak, and therefore only a UCL is used. The control chart

is applied to a sample statistic (often the individual daily count), and alerts

when that statistic exceeds the UCL. This UCL is a constant, set to achieve

a certain false alert level; the true alert rate can then be computed.

The three main types of control charts are the Shewhart, Cumulative Sum

(CuSum), and Exponentially Weighted Moving Average (EWMA). These are

covered in detail in Montgomery (2001). One point to remember is that in

biosurveillance, the CuSum and EWMA are reset after an alert. This is done

because the false alert rate determines the amount of resources which must be

devoted to a system. Resetting ensures that the ATFS is both the average time

to first false signal and the average time between false signals; thus the overall

false alert rate will be 1/ATFS, even though the rate will not be constant for

each day.

3 Problem formalization

We first consider a series with no outbreak signals; we call such a series the

underlying background or baseline data, denoted as ut (t=1,2,. . . ). It is this
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underlying background that a forecast method is attempting to forecast. The

predictions from the forecast method are ft; if we examine the forecast er-

rors, et = yt − ft, we can estimate the Mean Squared Error (MSE) or Root

Mean Squared Error (RMSE) and bias of those errors. This will be useful in

evaluating detection effectiveness.

Since we do not actually know a priori whether or not the data contain an

outbreak, we denote the actual values in the series as yt. When there is no

outbreak signal, yt = ut. Let ot be the outbreak signal at time t. In general,

yt = ut + ot, which assumes an additive number of cases due to the outbreak

signal. For most days, ot = 0, whereas ot > 0 only on days where there

is an outbreak. This reflects the epidemiological model commonly used in

biosurveillance. If a multiplicative outbreak effect is assumed (yt = ut · ot,

where ot > 1 only on days where there is an outbreak), we can model log(yt)

instead of yt, thereby converting to an additive outbreak form.

Since we do not know if an outbreak is present in a given series, we will refer to

the difference rt = yt−ft simply as a residual, rather than a pure forecast error.

In the absence of an outbreak signal, rt will be a pure forecast error and the

residuals will have variance equal to the forecast method’s MSE (assuming

unbiased forecasts). However, in the presence of an outbreak signal, rt will

contain an additional term; since the forecast method is forecasting only the

underlying background, we will not call this a forecast error. The residual can

thus be separated into two components, rt = (ut−ft)+ot. The first component

is the forecast error (et = ut − ft) and the second is the outbreak signal (ot).

An illustration of these components can be seen in Figure 1. It shows the

original series and forecasts in the left panel; the residuals obtained from
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subtracting the forecasts from the original series are shown in the right panel.

(Figure 1 approximately here.)

4 Theoretical performance

4.1 Standard Gaussian, known variance, one-day ‘spike’ outbreak signal

In our analysis, we first assume that the forecast method generates forecast

errors with a given MSE. Initially, we assume that these errors are indepen-

dent, normally distributed, with mean 0 and constant variance. We later relax

these assumptions and re-evaluate performance.

We now consider an additive outbreak signal that is injected into the moni-

tored series. This outbreak signal is considered to be independent of the back-

ground or residuals. Thus, we are in the realm of standard control charts: we

are seeking a change in the process mean, given a series of independent iden-

tically distributed (iid) normal observations. Let us first consider a single-day

‘spike’ outbreak signal.

Note that when converting a time series to a series of residuals, if the residuals

have 0 mean, then the residuals’ variance is equal to the forecast method’s

MSE.

First, consider a Shewhart chart being applied to residuals that are iid, et ∼
N(0, σ2). Setting the control limit at UCL means that a false alert will occur
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with ATFS/

ATFS =
1

1− Φ(UCL/σ)
. (1)

In the simplest case, the outbreak signal is of constant size, ot = η. In this

case, the algorithm will detect if et/σ + η/σ > UCL/σ. By using the same

transformation as above, the control chart will correctly alert on the day of

the outbreak if Z > UCL/σ − η/σ, Z ∼ N(0, 1), which translates into a

probability of detection equal to

DetectionRate = 1− Φ(UCL/σ − η/σ). (2)

Note that we obtain Equation (1) by setting η = 0.

Now consider two forecast methods, f1 and f2, with RMSEs equal to σ1 and

σ2, respectively, and where σ1 < σ2 (i.e., forecast method f1 provides more

precise forecasts). If detectors on each of f1 and f2 are set to have the same false

alert rate (ATFS1 = ATFS2) we can write UCL1/σ1 = UCL2/σ2 = a. Since

σ1 < σ2, then clearly UCL1 > UCL2. Thus the corresponding probabilities of

detection will be TA1 = 1−Φ(a− η/σ1) and TA2 = 1−Φ(a− η/σ2). Because

σ1 < σ2, we get TA1 > TA2 and therefore the more precise forecast method

(f1) will also provide a higher Detection Rate.

The effects are shown in Figure 2, where the Detection Rate of five forecast

methods are compared, all normalized to have the same ATFS. We see that as

the forecasting becomes more precise (i.e., the RMSE decreases), the detection

rate increases. While this relationship is monotonic (a lower RMSE always

results in improved detection), the amount of improvement depends on the

size of the outbreak signal (η). Since UCL = σΦ−1(1−1/ATFS) (see equation
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1), the improvement in detection rate from using f1 over f2 can be expressed

as

Φ(Φ−1(1− 1/ATFS)− η/σ2)− Φ(Φ−1(1− 1/ATFS)− η/σ1). (3)

Due to the nature of the normal cumulative distribution function Φ, this quan-

tity must be computed numerically.

(Figure 2 approximately here.)

For an EWMA chart, we compute similar probabilities in Appendix A.

4.2 Stochastic outbreak signal

Thus far, the assumptions are still in the realm of standard control charts. A

slightly more general case is to assume that the outbreak is not of fixed size,

but is instead stochastic, e.g., ot ∼ N(η, ν2). In this case, a Shewhart chart

has probability of detection equal to

DetectionRate = 1− Φ
(
(UCL− η)/

√
σ2 + ν2

)
. (4)

Figure 3 shows the relationship between expected outbreak size (η) and De-

tection Rate for a stochastic outbreak signal, applying a Shewhart control

chart to five forecast methods with varying RMSEs. It can be clearly seen

that, compared to the fixed-size spike, the increased variance in the outbreak

signal reduces the detection rate for larger spikes, but increases it for smaller

ones; this effect is proportional to the amount of outbreak-size variance, ν2.

In comparing two methods, this distortion can drastically affect the relative

performance of the two forecast methods: a large advantage of one forecast
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method over another under one variance may be almost trivial under a differ-

ent outbreak-size variance. However, this significant effect due to the stochastic

nature of an outbreak is seldom if ever considered.

(Figure 3 approximately here.)

4.3 Multi-day outbreaks

When outbreak signals last more than one day, there are more chances to

detect them. This allows consideration not only of the probability of detection,

but also the distribution of when the outbreak is detected.

We first consider a fixed step increase of size η that starts at time i and

continues indefinitely (oi = η, ∀i > t). Such an outbreak signal could be the

result of an environmental contamination (biological or chemical) resulting in a

constant increase in the number of illness cases. Since any control chart method

will eventually alert, we focus on timeliness over true alert probabilities. In

control chart terminology, this is usually referred to as the Average Run Length

(ARL), which is the expected number of days until an alert is generated.

For the Shewhart chart, each day is essentially a Bernoulli trial in terms of

detection, with probability of success p = 1 − Φ(UCL/σ − η/σ). Thus, the

number of days until detection is a geometric random variable with expected

value ARL = (1− p)/p. (If the alerting day is considered to be included, this

is (1− p)/p + 1 = 1/p.)

The relationships between outbreak size and expected delay (i.e., the number

of days until detection), for forecast methods of varying precision, can be
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seen in Figure 4. Results for CuSum and EWMA charts, which are better

suited for detecting small step increases, can be seen in Appendix B. Note

that the quantity of the performance difference varies significantly based on

the outbreak size and the amount of forecast improvement; the quantity is

crucial in determining the benefits from using an improved forecast method.

(Figure 4 approximately here.)

We caution that in practice the expected value (ATFOS) may not be the most

useful metric, since it will incorporate alerts generated many days after the

outbreak signal first appeared in the data. In other words, it averages over the

entire distribution of possible delays. If a detection must occur within the first

k days of an outbreak signal to be useful to the user, then more effective metrics

of model performance and comparison would be the probability of alert within

the first k days and the conditional expected timeliness, given that an alert

occurred within the first k days. This same issue comes up when recognizing

the finite duration of outbreaks; if an outbreak only lasts k days, then a

detection must certainly occur within k days to be useful. In essence, one must

make sure to examine detection probability as the probability of practically

useful detection, and timeliness as the expectation of delay, conditional on a

practically useful detection.

An important condition of our results regarding improved forecasting leading

to improved detection is that the forecast method does not include the out-

break in the background data and effectively forecast the combination (a prob-

lem described in Burkom, Murphy and Shmueli (2007)). This can be achieved

in practice by using a ‘guardband window’ which means that forecasts are

generated for more than one day ahead. Forecasting farther into the future
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generally results in reduced precision, which in turn leads to deteriorated de-

tection probabilities and timeliness. It is, in fact, precisely when considering

tradeoffs of this kind that one must know the quantitative loss from decreased

forecast precision.

4.4 Performance under assumption violation

In practice, it is rare that forecast methods will provide residuals that are

iid normal with mean 0. There are two major types of violations that appear

in residuals from biosurveillance data: autocorrelation and seasonal (cycli-

cal) variance (e.g., Lotze, Murphy and Shmueli (2008); Burkom, Murphy and

Shmueli (2007)). We now examine the relationship between detection and

forecast precision under the two types of assumption violations.

4.4.1 Autocorrelation

Autocorrelation in a series of residuals means that the residuals on consecutive

days are not independent. Autocorrelated residuals indicate that the forecast

method did not capture part of the dependence structure in the raw data

(such as a seasonal component). In biosurveillance data, the most pronounced

autocorrelation in series of residuals is that of lag 1 (the correlation between

rt and rt−1) and it is typically positive. When we refer to autocorrelation

hereafter, we are referring to positive autocorrelation.

When data are autocorrelated, the series will have increased variance due to

the autocorrelation. In the case of an autoregressive model of order 1 (AR(1)),
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given by

yt = φyt−1 + εt, εt N(0, σ2
z) (5)

the resulting variance is σ2
z/(1−φ2) (from Maragah and Woodall (1992)). The

effect of autocorrelation on detection performance has been examined in the

control chart literature. Several papers that look at Shewhart, CuSum, and

EWMA charts applied to autocorrelated series indicate that autocorrelation

leads to a greater number of false alarms, due to the greater variance in the

series (described in Maragah and Woodall (1992); Woodall and Faltin (1993);

Padgett, Thombs and Padgett (1992); Noorossana and Vagjefi (2005)) . How-

ever, for Shewhart charts, if the control chart limits are adjusted to account

for the variance of the actual autocorrelated series (rather than the variance

which would exist without any autocorrelation), then the overall probability

of detection will remain the same for a spike outbreak. We do caution that

while this is true unconditionally, the probabilities of detection, conditional

on the value for the previous day, are not identical for each day. The probabil-

ity of alert will be larger on days following large values, and smaller on days

following small values. As we discuss below, this implies that methods taking

this conditional probability into account should provide improved detection

performance.

Although the performance of a Shewhart chart is unaffected by autocorrelation

on single-day spike outbreaks, there will be a longer average delay in detection

when considering a multi-day outbreak signal, both for Shewhart and other

control charts. When the oubtreak begins on a day with a small residual, which

is too low to alert (even after the outbreak signal addition), the subsequent

residuals will likely also be too low for the outbreak to be detected. Thus,
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average delay will increase for higher values of autocorrelation. These effects

are shown in Section 5.1.

To determine whether or not a residual series contains autocorrelation, an

autocorrelation plot may be used (with α-level bounds (z1−α/2)/
√

N). When

autocorrelation is present, as mentioned above, the conditional probability

of detection varies by day; this implies that one might use an ARMA-type or

other model as an additional forecasting step on the residuals from the original

forecast method (such mdoels are described in Box and Luceno (1997); Mont-

gomery and Mastrangelo (1991)). However, note that in the case of multi-day

outbreaks, such models will incorporate the outbreak signal into the forecast-

ing, and thus the assumption of independence of outbreak and forecast error

will be violated. The results of such incorporation on the performance of de-

tection algorithms is discussed in Hong and Hardin (2005). The decrease in

performance from incorporating an outbreak must be measured against the

gain achieved by reducing the autocorrelation, as mentioned at the end of

Section 4.3; it is precisely these kinds of tradeoffs for which this theoretical

quantification is useful.

4.4.2 Seasonal variance

When the forecast precision is non-constant, even if the forecast method pro-

duces unbiased forecasts, the theoretical analysis in Section 4.1 does not hold.

This can occur, for example, when the series of daily counts follows a Poisson

distribution with different λ parameters for each day of the week. A simi-

lar effect can occur when an additive forecast method is applied to a series

with multiplicative background behavior. Although a preliminary log trans-
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formation of the series may be a reasonable and popular solution, such a

transformation will also have a significant impact on the outbreak signal.

Seasonal variance can also be induced by deseasonalizing methods which nor-

malize values by multiplication. An example is deseasonalizing a series from

a day-of-week effect using the ratio-to-moving-average method (as described

in Lotze, Murphy and Shmueli (2008)). Conversely, if such methods are used

appropriately, they may help reduce seasonal variance by normalizing the vari-

ance of residuals across seasons. However, here too there is the danger that a

transformation that affects the variance of the residuals will also impact the

size of the outbreak signal.

If there is periodic variance in the residuals series with period k, we can repre-

sent the variance as a set of variances, σ2
1...σ

2
k. Then the overall variance of the

series (assuming that the mean residual=0 for each season) is
∑k

i=1 (1/k)σ2
i .

If the seasonal pattern is such that some days have equal variance, we can

represent this as
∑k

i=1 αiσ
2
i , where αi is the proportion of days with variance

σ2
i . Given this mixture model for seasonal variance, we can compute the prob-

ability of detection. For a step outbreak signal using a Shewhart control chart,

we can compute separate probabilities of detection by season; thus, the prob-

ability of detection for an outbreak signal of size η is

DetectionRate =
k∑

i=1

αiP (detection|η, σi). (6)

Using Equation (2), this quantity is equal to
∑k

i=1 αi(1− Φ((UCL/σi)− (η/σi))),

where the UCL is derived from the overall variance of the series.

Consider, for example, a series with seasonal variance between weekdays and

weekends, such that weekday residuals have a higher variance than that on
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weekends. The detection probability is therefore (5/7)(1−Φ(UCL/σweekday −
η/σweekday))+(2/7)(1−Φ(UCL/σweekend−η/σweekend)). If the overall variance

is kept constant at 100, but the difference between weekend and weekday vari-

ance is increased, the performance becomes more markedly different from the

constant variance case. We can see this difference in performance in Figure 5;

as weekday and weekend variances become more distinct, detection rates de-

teriorate for small outbreak sizes, but actually improve for some intermediate

outbreak sizes. At these intermediate outbreak sizes, the increased probability

of detection when the outbreak occurs on low-variance weekends outweighs

the decrease in performance on higher-variance weekdays. As the overall vari-

ance is increased, this “kink” pattern of deviation from the constant variance

case is increased.

(Figure 5 approximately here.)

In conclusion, if variance is strongly differentiated by season, an improved

RMSE will not always give better detection performance, depending on the

size of the outbreak. For some outbreak sizes, a forecast method with a larger

overall RMSE but low weekend RMSE can outperform a forecast method

with a smaller overall RMSE. When there is significant seasonal variance, the

performance can be evaluated more accurately using Equation 6 and estimates

for the different seasonal variances. This suggests that improved monitoring

can be achieved by using different UCLs and/or different forecast methods for

each season.
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5 Empirical validation

We have shown theoretical results for detection and timeliness under different

forecast methods and outbreaks. Next we describe simulation experiments that

demonstrate the effects of autocorrelation. We then evaluate the applicability

of the theoretical results on authentic biosurveillance data.

5.1 Autocorrelation simulation

To study the impact of autocorrelation on detection and timeliness perfor-

mance, residuals were simulated using different levels of autocorrelation, but

again maintaining the same overall series variance. In the Shewhart charts

using spike outbreaks, no significant deviation was seen from the theoretical

performance, when the control limit was set according to the final resulting

variance. Figure 6 shows that the detection performance is not affected by au-

tocorrelation. Figure 7 shows a significant deterioration in timeliness for small

outbreak sizes and high autocorrelation. This is in agreement with Wheeler

(1991, 1992) regarding the relatively small impact of most autocorrelation

levels on Shewhart chart performance.

(Figure 6 approximately here.)

(Figure 7 approximately here.)
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5.2 Authentic biosurveillance data with simulated outbreaks

An authentic health dataset is now used to determine the effectiveness of the-

ory when estimating performance of currently-used forecast methods. These

tests show the applicability of the theory to the evaluation of forecast meth-

ods on actual health data for detecting siaw‘aw outbreaks. If the predicted

performance and actual performance match well, then the theoretical analysis

can be used to accurately estimate the detection performance of actual sys-

tems; thus, the forecast metrics can be a useful comparison metric, without

requiring computationally intensive simulation studies.

To examine the forecast methods’ effectiveness, authentic health series data

are used, with a simulated outbreak signal inserted at various possible dates

of outbreak. This methodology is now commonly used in biosurveillance to

estimate the effectiveness of detection (Goldenberg, Shmueli, Caruana and

Fienberg (2002); Reis and Mandl (2003); Stoto, Fricker, Jain, Davies-Cole,

Glymph, Kidane, Lum, Jones, Dehan and Yuan (2006); Burkom, Murphy and

Shmueli (2007)). See Shmueli and Burkom (ming) for more examples. The

technique involves using an authentic health data set from a health provider,

simulating a potential outbreak signal and inserting the simulated additional

counts in the authentic data. Then, the detection algorithm is run to determine

whether it alerts during the simulated outbreak, and if so, how quickly. By

repeating this routine multiple times and inserting the simulated outbreak at

multiple points, one can estimate how the detection algorithm would perform

during an actual outbreak.

Our authentic dataset comes from the BioALIRT program conducted by the
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U.S. Defense Advanced Research Projects Agency (DARPA), described in

Siegrist and Pavlin (2004). It includes three types of daily counts: military

clinic visit diagnoses, filled military prescriptions, and civilian physician office

visits. The BioALIRT program categorized the records from each data type as

respiratory (RESP), gastrointestinal (GI), or other, and the data were gath-

ered from 10 U.S. metropolitan areas with substantial representation of each

data type. For this study, we use the daily count of respiratory symptoms

from civilian physician office visits, all within a particular U.S. city. The data

consist of counts from 700 days, from July 1, 2001 to May 31, 2003, and can

be seen in Figure 8. The first 1/3 of the data (233 days) was used for training,

and the last 2/3 (467 days) for testing.

(Figure 8 approximately here.)

Simulated spike outbreak signals of various sizes (0-300) were generated and

inserted into every day in the test set, creating 467 trials for each outbreak

signal size. For each outbreak size, the detection rate was calculated as the

average over all 467 insertions. An illustration of the process can be seen in

Figure 9.

(Figure 9 approximately here.)

Three forecast methods for forecasting next-day daily counts were compared:

1. Holt-Winter’s multiplicative exponential smoothing, with a seasonal compo-

nent which captures day-of-week (7 seasons) and smoothing parameters equal

to alpha=0.4, beta=0, gamma=0.15, plus a restriction to not update param-

eters when a day’s percentage error is greater than 50%. Burkom, Murphy

and Shmueli (2007) have shown that this method is effective in the context
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of biosurveillance, as well as being easy to understand and apply for a large

class of data types. Little data history is needed, and due to its highly adap-

tive nature, it reduces the need for individual modifications for specific data

sources and syndrome groupings.

2. A regression model, which models the log of daily counts as a linear combi-

nation of three types of predictor terms: a linear trend, day-of-week indicators,

and sin and cos terms with a yearly period for capturing yearly seasonality.

Each day’s prediction is given by

ft = exp
(
β̂0t + β̂1tt + β̂dt + β̂stsin(t ∗ 2π

365.25
) + β̂ctcos(t ∗ 2π

365.25
)
)

(7)

Where β̂dt is the day-of-week coefficient for day t, and all β̂ values are estimated

by minimizing least squares over days 1...t-1.

3. 7-day differencing, as proposed in Muscatello (2004), which models the next

day’s count as the count from one week previous.

For a more detailed description of these methods and comparison of their

performance, see Lotze, Murphy and Shmueli (2008). For each method, the

first 1/3 of the data (233 days) was used for training, and the last 2/3 (467

days) for comparison. Note, however, that the 7-day differencing has no real

“training” to speak of, and that both the Regression and Holt-Winters method

incorporate all previous days when making a forecast. A small plot of the

residuals from each forecasting method can be seen in Figure 14.

The RMSE for each forecast method was computed and used to generate

a theoretical performance curve for each forecast method as in Section 4.1.

Actual performance was computed using the method described in Figure 1,
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using the forecast method for prospective forecasting, subtracting the forecast

to generate residuals, and applying a Shewhart control chart to those residuals.

(Figure 10 approximately here.)

Results can be seen in Figure 10, which compares the actual performance

from a forecasting method’s residuals to the performance which would be

expected from the theoretical performance for residuals of the same overall

RMSE. When an overall UCL was used, the actual performance was somewhat

similar to that predicted by theory, but seemed to underdetect small outbreaks

and overdetect midsized outbreaks. This result is similar to that seen under

seasonal variance (see Section 4.4.2), which reflects the seasonal variance of

the residuals (seen in Figure 11).

(Figure 11 approximately here.)

A further examination was done, with variance computed for each day-of-

week and performance predicted using seasonal variance computations. The

results are shown in Figure 12, where an improved fit is seen, especially for

the Holt-Winters residuals, although there is still some difference on the larger

outbreaks.

(Figure 12 approximately here.)

In order to compare timeliness, the experiment was repeated using step out-

breaks instead of spike outbreaks. Step outbreaks have an additional report

count which begins on a certain day, and lasts indefinitely. Figure 13 compares

the timeliness performance of real forecast methods to theoretical performance

predicted by a 7-day seasonal variance model. The timeliness is worse for small

outbreaks, particularly for the regression and 7-day differencing.
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(Figure 13 approximately here.)

The extra delay for regression and 7-day differencing seems to be due to auto-

correlation: as seen in Figure 14, the regression and 7-day differencing residuals

have larger autocorrelation than Holt-Winters. Alternatively, the overall dif-

ferences may be due to the bias of the residuals (none has mean 0) or their

non-normal distribution. However, we see that the forecast methods’ perfor-

mance ranking is related to their RMSE ranking, as expected.

(Figure 14 approximately here.)

In short, the effect of forecast precision on detection performance for these

health data is close to that expected; more precise forecast methods result in

improved detection, accounting for seasonal variance improves performance

estimation, and the amount of difference between forecast methods depends

on outbreak size.

6 Conclusions and future work

In this paper, we have shown that improved forecasting results in improved

detection, both in terms of probabilities of true alert and in timeliness. We ex-

amined the effect of forecast precision on detection performance theoretically

and quantified the effects under standard control chart assumptions. We have

also examined the effects of assumption violation on this relationship, show-

ing that improved forecasting does not always result in improved detection,

as in the case of seasonal variance. We conclude that forecasting should be

tuned to best capture the background non-outbreak behavior, while detection

should be tuned to the outbreak signal. However, the level of investment in
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more precise forecasts should be weighed against factors such as the required

outbreak size, amount of residual autocorrelation, and risks of the forecast

method capturing the outbreak.

Several questions arise for practical consideration. First, while we have ex-

plored the effects of autocorrelation and seasonal variance, we have not ex-

plored the effects of biased or non-normal residuals. As we have seen in the

authentic data, biases can arise in actual residuals and can affect performance.

In addition, while we have examined the detection performance for spike out-

breaks and timeliness performance for step outbreaks, a complete delay distri-

bution would include both metrics and give a more complete picture; it would

also be relevant to consider average and complete delay distributions for other

outbreak shapes, such as exponential or lognormal rise. Lastly, we have not

considered the quality of the training data used for prediction. Not only should

it be possible to apply previous work to give expected performance based on

the amount of training data (such as the multiplicative Holt-Winters accu-

racy bound given by Chatfield and Yar (1991)), but the impact of outbreaks

contaminating the training data or different guardband widths should also be

considered.

In conclusion, given the forecasting precision needed for useful detection, the

question is whether that level of precision is achievable. This raises the question

of whether there is enough quality of signal in pre-diagnostic data. The random

elements in the data impose a limit on how well we can forecast, how low an

RMSE we can achieve, and ultimately on how well we can detect. It may

be that, due to the high noise in most pre-diagnostic data, relatively high

false alert rates are required in order to detect outbreaks in a timely manner.

For example, if the desired performance is to have a false alert once every
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two weeks, and have a 95% chance of detecting a spike outbreak impacting

100 people, to achieve this one would need normal residuals with a forecast

RMSE < 32. In contrast, the best forecast method used here has RMSE = 59

on actual data. If we cannot accept a higher false alert rate, then we must either

find a way to further improve our forecast methods (e.g., by incorporating

other sources of information or by using ensembles, as in Lotze and Shmueli

(2008)), or tailor our detectors to specific outbreak signals.

7 Figures
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Fig. 1. An original series (solid line, ut) and its forecasts (dashed line, ft) are shown

in the left panel; the residuals from subtracting forecasts from the series are shown

in the right panel, in a one-sided Shewhart control chart. The dotted line is the

addition of an outbreak signal (ot + ut).
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Fig. 2. Comparing Shewhart chart performance for forecast methods with different

RMSEs, as a function of outbreak size (g=η/σmin, where σmin is the RMSE of the

best forecast method)
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Fig. 3. Comparing Shewhart chart performance for forecast methods with different

RMSEs, for stochastic outbreak, as a function of outbreak mean size (g=η/σmin,

where σmin is the RMSE of the best forecast method). Note that intercepts at g = 0

are not equal, due to the stochastic nature of the outbreak.
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Fig. 4. Comparing Shewhart chart timeliness for forecast methods with different

RMSEs, as a function of outbreak size (g=η/σmin, where σmin is the RMSE of the

best forecast method)
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Fig. 5. Comparing Shewhart chart performance for forecast methods with different

residual seasonal variances (diff=difference between weekday and weekend residual

variance) but identical overall variance σ2 = 100
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Fig. 6. Comparing Shewhart chart performance for forecast methods with different

residual autocorrelation levels (ACF) but identical overall variance σ2 = 1)
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Fig. 7. Comparing Shewhart chart timeliness for forecast methods with different

residual autocorrelation levels (ACF) but identical overall variance σ2 = 1)
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Fig. 8. The original, raw respiratory health data series, with training and testing

sections labeled.
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Fig. 9. An illustration of taking raw, authentic health data series and injecting a

spike outbreak into three different days, resulting in three test data series. These

test series are then used as outbreak-labeled time series for estimating the method’s

detection rate. In our implementation, 467 such data series were created for each

outbreak size.
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Fig. 10. Comparing actual (thin) and theoretical (thick) Shewhart chart perfor-

mance for forecast methods with different RMSEs, assuming constant variance,

as a function of outbreak size (η). Solid=Holt-Winters, Dashed=7-day Diff, Dot-

ted=Regression. Each forecasting method has the sigma for its residuals measured,

and is matched with a plot of theoretical performance for residuals of the same

sigma.
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Fig. 11. Overall residual variance of the three forecast methods, and variance by

day-of-week. Seasonal day-of-week variance affects detection performance, and can

be accounted for using the formulas in Section 4.4.2.
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Fig. 12. Comparing actual (thin) and theoretical (thick) Shewhart chart perfor-

mance for forecast methods with different RMSEs, assuming day-of-week variance,

as a function of outbreak size (η). Solid=Holt-Winters, Dashed=7-day Diff, Dot-

ted=Regression. Each forecasting method has the sigma for its residuals measured,

and is matched with a plot of theoretical performance for residuals of the same

sigma, with the same day-of-week residual variance.
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Fig. 13. Comparing actual (thin) and theoretical (thick) Shewhart chart time-

liness for forecast methods with different RMSEs, assuming constant variance,

as a function of outbreak size (η). Solid=Holt-Winters, Dashed=7-day Diff, Dot-

ted=Regression. Each forecasting method has the sigma for its residuals measured,

and is matched with a plot of theoretical performance for residuals of that sigma.
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Fig. 14. Examining the residual autocorrelation of the three forecast methods.

Y-axes are the same for all graphs, which show the overall residuals for each fore-

casting method and a zoomed-in portion to show daily detail.
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A Appendix A: EWMA performance

We can measure the effect of improved forecasting on EWMA detection, as

in Equation (2) for Shewhart charts, by noting that EWMAt is a normal

random variable, with mean 0 and variance as in Montgomery (2001):

σ2
EWMAt

= σ2

(
λ

2− λ

) (
1− (1− λ)2t

)
, (A.1)

where t is the number of time points since the EWMA was started. After an

initial startup period, the variance converges to σ2 (λ/(2− λ)). The one-sided

EWMA has been shown to have very similar performance to the EWMA

approximated by this steady-state normal distribution (Shu, Jiang and Wu

(2007)). By similar argument to the Shewhart case (in section 4.1), we can

show that the improvement in detection probability from using f1 over f2 can

be expressed as

Φ


Φ−1(1− 1

ATFS
)− λη

σ2

√
λ

2−λ


− Φ


Φ−1(1− 1

ATFS
)− λη

σ1

√
λ

2−λ




(A.2)

Figure A.1 shows the relationship between outbreak size (η) and Detection

Rate for EWMA detectors when applied to five different forecast methods,

each with a different RMSE.

(Figure A.1 approximately here.)

Comparing Figures 2 and A.1 shows that an EWMA chart has a lower chance

of detecting a spike outbreak compared to a Shewhart chart with the same

ATFS, when both are applied to residuals with the same RMSE. The reason

is that by giving the maximum weight to the most recent observation, the
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Shewhart chart is more tuned to detect spike outbreak signals. A much larger

spike is necessary to achieve the same detection rate with an EWMA chart.

However, we also note that as a weighted sum of observations, the EWMA

chart is more robust to deviations from normality, and so may be more effective

when the residual distribution is further from normal.

B CuSum and EWMA timeliness

In a CuSum chart, the monitoring statistics on different days are no longer

independent, and therefore the number of days until an alert is no longer

a geometric variable. However, the ATFS can still be accurately determined

using numerical methods or approximations. One such approximation is found

in Siegmund (1985), which approximates the ATFS by:

ATFS ≈ 2(e−2(UCL/σ+1.166) + UCL/σ + .166) (B.1)

This same approximation can provide the ATFOS:

ATFOS ≈ e−2∆b + 2∆b− 1

2∆2
, (B.2)

where ∆ = η/σ − 1/2 and b = UCL/σ + 1.166.

For the EWMA chart, the ARL is computed numerically; we use the method

described in Crowder (1987), numerically integrating the Fredholm equation

using Gaussian quadrature.

The relationships between outbreak size and expected delay (i.e., the number

of days until detection), for forecast methods of varying precision, can be seen

in Figures B.1 and B.2, for CuSum and EWMA charts respectively.
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(Figure B.1 approximately here.)

(Figure B.2 approximately here.)

For each of these methods, more precise forecasts result in faster detection.

One surprising result, as seen in Figure B.3, is that although the CuSum chart

has improved detection over the Shewhart chart for small outbreak signals

(as expected), the Shewhart chart quickly catches up and outperforms the

CuSum as the outbreak size increases. In addition, this timeliness improvement

appears to be bounded below, and to hold only for a certain range of outbreak

sizes.

(Figure B.3 approximately here.)

B.1 Autocorrelation

Results using CuSum charts on autocorrelated data are similar to those for

Shewhart charts (Section 5.1). Detection may be slightly affected for spike

outbreaks, and timeliness is more strongly affected than in Shewhart charts.
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Fig. A.1. Comparing EWMA chart performance for forecast methods with different

RMSEs, as a function of outbreak size (g=η/σmin, where σmin is the RMSE of the

best forecast method.)
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Fig. B.1. Comparing CuSum chart timeliness for forecast methods with different

RMSEs, as a function of outbreak size (g=η/σmin, where σmin is the RMSE of the

best forecast method.)
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Fig. B.2. Comparing EWMA chart timeliness for forecast methods with different

RMSEs, as a function of outbreak size (g=η/σmin, where σmin is the RMSE of the

best forecast method.)
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Fig. B.3. Expected difference in delay resulting from using a Shewhart instead of a

CuSum, on the same forecast residuals.
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